YLURES DE CARBONYLE DÉRIVÉS DE *GEM*-DICYANOÉPOXYDES

STÉRÉOCHIMIE DES DIOXOLANNES OBTENUS PAR ADDITION D'ALDÉHYDES AUX YLURES DE CARBONYLE

A. ROBERT, J. J. POMMERET et A. FOUCAUD

Groupe de recherches de physicochimie structurale, Université de Rennes, Avenue du Général Leclerc, Rennes, France

(Received in France 18 November 1971; Received in the UK for publication 21 December 1971)

Résumé La réaction d'aldéhydes sur des gem-dicyano époxydes conduit à des dioxolannes dont on établit la structure par RMN et par une étude d'équilibration par BF_3 . On montre que ces dioxolannes résultent de l'addition des aldéhydes sur les ylures de carbonyle préalablement formés par ouverture thermique des époxydes. La réactivité des aldéhydes sur les époxydes, en fonction de substituants donneurs ou attracteurs d'électrons, est discutée. L'éventualité d'une réaction non concertée est envisagée dans un cas limite.

Abstract The reaction of aldehydes with 1,1-dicyano oxirans gives dioxolanes. The structure of these adducts, established by NMR and through boron trifluoride equilibration, is proof of the C—C ring scission of the oxirans. The effect of substituants on the reactivity of aldehydes with carbonyl ylides is discussed. The occurrence of a non concerted reaction is considered in an extreme case.

L'ADDITION DES ALDÉHYDES et cétones aux époxydes en présence d'un acide de Lewis conduit à des dioxolannes. La réaction procède par une rupture carbone-oxygéne de l'époxyde.¹

Ce mode de rupture est également retenu lorsque l'aldéhyde benzoïque réagit, en l'absence d'acide, mais à température élevée, sur l'oxyde de tétracyanoéthylène.² A notre connaissance, aucun dioxolanne résultant d'une rupture carbone carbone du cycle époxyde, n'a encore été préparé.

Nous avons précédemment montré, 3,4 que les époxydes substitués en α par deux groupements nitriles, ou un nitrile et un ester, s'ouvrent par voie thermique en donnant des ylures de carbonyle. Ces ylures de carbonyle conduisent à des réactions de cycloaddition-1,3 avec des dipolarophiles comme l'acétylène dicarboxylate de méthyle, le maléate ou le fumarate de méthyle.

Dans le présent mémoire, nous décrivons la structure des produits d'addition résultant de la thermolyse des époxydes 1 ou 2 en présence de divers aldéhydes.

Par chauffage d'un mélange d'un époxyde 1 ou 2 et d'un benzaldéhyde para

substitué 3, on obtient, avec de bons rendements, un mélange de dioxolannes diastéréoisomères 4a + 4b ou 5a + 5b. De même, l'aldéhyde cinnamique ou α -bromocinnamique 6 réagit avec les époxydes 1 en donnant les mélanges de dioxolannes diastéréoisomères 7a + 7b ou 8a + 8b.⁵ Dans tous les cas, nous avons isolé le dioxolanne formé de façon prépondérante, à côté d'un mélange enrichi en deuxième isomère. Aucune de ces fractions: isomère prédominant pur, ou mélange enrichi en deuxième isomère, n'évolue dans les conditions de la réaction ce qui exclut l'éventualité d'une isomérisation ultérieure à la formation des dioxolannes.

Structure des dioxolannes

(a) Dioxolannes 4a et 4b ou 5a et 5b (Tableau 1). L'examen des spectres de RMN révèle que les protons fixés sur l'hétérocycle ne sont pas couplés, ce qui est incompatible avec une structure telle que 9.

Conformément aux structures **4a** et **4b**, le proton H_2 , en α de deux atomes d'oxygène est plus déblindé que le proton H_4 , situé en α d'un atome de carbone et d'un atome d'oxygène.²

Nous avons éliminé l'éventualité de la structure 10 en vérifiant que le proton le

Dioxolannes 4a ou 4b	x	Y	F(°C)	δ H₄ singulet	δH ₂ singulet	% relatif de 4a et 4b
4 a	н	NO ₂	96	5.72	6-31	63
4b	н	NO ₂	•	5.58	6.72	37
42	Н	MeO	131	5.53	6.23	63
4b	Н	MeO	_•	5-42	6.65	36
42	Cl	NO ₂	135	5.70	6.32	64
4b	Cl	NO ₂	107	5.52	6.74	36
42	Cl	MeŌ	108	5-53	6.20	64
4b	Cl	MeO	*	5-42	6.63	36
42	Cl	н	90	5.56	6.22	62
4b	Cl	н	*	5.47	6.65	38
4a	MeO	Cl	132	5.50	6.22	63
4b	McO	Cl	_	5.43	6.62	37
4 a	MeO	NO ₂	166	5.64	6.37	100†
4a	MeO	MeŌ	92	5.20	6.20	65
4 b	MeO	MeO	*	5.44	6.62	35
Dioxolannes						% relatif de
5a ou 5b	х	Y	F(°C)	δΗ4	δΜe	5a et 5b
5, R = Ph	Н	NO ₂	145	5.56		<u>—.</u> .
en vala	н	NO ₂	142	5.86	1.95	73
5, $\mathbf{K} = \mathbf{Me} \{\mathbf{b}\}$	н	NO2	_•	5.40	2.00	27

TABLEAU I. SPECTRES DE RMN DES DIOXOLANNES 4a, 4b, 5a ET 5b

* mélange 4a + 4b enrichi en 4b

⁺ L'isomère 4a est obtenu de façon quasi quantitative: des signaux de très faible intensité pourraient correspondre à des traces de l'isomère 4b

plus déblindé (en α de deux atomes d'oxygène) est initialement fixé sur le carbone β de l'époxyde 1. En effet, dans les dioxolannes **5a** et **5b** (**R** = **Ph** ou Me), on n'observe plus de signal vers 6.5 ppm, tandis que le signal vers 5.5 ppm correspondant au proton le plus blindé, est présent.

De plus, lorsque l'on fait réagir de l'aldéhyde benzoïque deutérié⁶ sur l'époxyde (1, X = Cl), on obtient les dioxolannes diastéréoisomères 11a et 11b. Les spectres de RMN montrent que le signal correspondant au proton le plus blindé (en α d'un seul atome d'oxygène) a disparu. Par suite l'hydrogène fixé sur le carbone 4 a été remplacé par le deutérium.

pCIC₆H₄CH-C(CN)₂ + PhCDO

$$(NC)_2C_{\frac{1}{2}}^{\frac{3}{2}}C_{-C_6}H_4pCl$$

H
11a: $\delta H_2 = 6.20 \text{ ppm}$
11b: $\delta H_2 = 6.62 \text{ ppm}$

En utilisant la méthode d'équilibration par BF_{3} ,⁸ nous avons pu montrer que le dioxolanne 4a (X = Cl, Y = NO₂), obtenu de façon prépondérante est thermo-

dynamiquement plus stable que son isomère 4b. Eliel et al.⁸ ont étudié une série de dioxolannes 15 substitués en position 2 et 4.

Ils montrent que l'isomère cis est thermodynamiquement plus stable que l'isomère trans, et présente en RMN le signal du proton H_2 , à champ plus fort que dans le cas de l'isomère trans. Nous constatons également que le proton H_2 du dioxolanne 4a résonne à champ plus fort que celui du dioxolanne 4b (Tableau 1). Il nous paraît dès lors raisonnable de proposer la structure cis 4a pour le dioxolanne obtenu de façon prépondérante. Nous constatons, en outre, que H_4 résonne à champ plus faible dans l'isomère cis 4a que dans l'isomère trans 4b. Ce résultat est en accord avec les observations de Chuche concernant une série de dioxolannes substitués.⁹

Au cours des expériences d'équilibration par BF₃, nous avons noté une intéressante différence de réactivité entre les isomères 4a et 4b, avec $X = Cl, Y = NO_2$. (Tableau 2).

Si on prolonge le temps de contact de BF_3 et du dioxolanne 4a, les proportions relatives de 4a et 4b obtenus restent inchangées, mais on augmente la quantité de parachlorobenzaldéhyde et d'époxyde (1, $X = NO_2$). Nous avons vérifié que l'époxyde (1, $X = NO_2$) ne réagit pas aveç le parachlorobenzaldéhyde dans les conditions de la réaction. Les résultats du Tableau 2 montrent que le dioxolanne 4a est thermodynamiquement plus stable que 4b. Pour rendre compte de la nature des produits obtenus par action de BF_3 sur les dioxolannes 4a ou 4b, on pourrait considérer que BF_3 réagit sur l'oxygène en 3, dans le cas de 4a et sur l'oxygène en 1, dans le cas de 4b, selon le schéma 2.

L'isomérisation des dioxolannes en présence d'un excès de BF_3 a lieu par l'intermédiaire des complexes A ou B qui apparaissent sous forme d'huile insoluble dans le milieu réactionnel. Le complexe A, détruit par l'eau, donne un mélange (Tableau 2) différent du mélange obtenu par hydrolyse du complexe B.

Dioxolannes 4	% Produits obtenus	
Dioxolamics 4	(déterminés par RMN)	
	p-Cl·C ₆ H ₄ CHO	24%
4a	$p-NO_2C_6H_4CH-C(CN)_2$	24%
	` 0´´	
	4a	45%
	4b	7%
4b	p-NO ₂ C ₆ H ₄ CHO	2%
	4a	83%
	4b	15%

SCHÉMA 2

Le fait que BF₃ réagisse sur l'oxygène en 1 dans le cas du dioxolanne *trans* 4b est vraisemblablement de nature stérique puisque cet oxygène, en α de deux groupes nitriles, n'est pas plus basique que l'oxygène 3. L'examen de modèles moléculaires montre, dans le cas de l'isomère *trans* 4b, que BF₃ peut difficilement attaquer l'oxygène en 3 tandis que l'oxygène en 1 est peu encombré, surtout si on admet une conformation privilégiée où le groupement *para*-chloro-phényle est en position pseudoéquatoriale. Ces résultats sont à rapprocher de ceux obtenus par Eliel⁸ qui admet pour les dioxolannes disubstitués en 2 et 4, une conformation privilégiée des isomères trans pour laquelle le substituant en 2 occupe une position pseudo-équatoriale.

Dans le cas du dioxolanne **4a**, les groupes aryles sont d'un même côté par rapport au plan moyen du cycle dioxolanne. Le côté opposé est par suite, peu encombré et l'oxygène en 3 peut alors être facilement attaqué par BF₃ pour donner le complexe A.

(b) Dioxolannes 7a et 7b ou 8a et 8b. Les principales caractéristiques RMN de ces dioxolannes sont données dans le Tableau 3, à l'exception des isomères 7b, qui n'ont pas été purifiés (voir partie expérimentale) et pour lesquels les signaux de RMN interfèrent avec ceux de 7a, ce qui empêche le dosage de 7a et 7b dans le mélange.

Les spectres de **7a**, **8a** et **8b** sont en accord avec les structures proposées. En effet, la multiplicité observée correspond bien à celle attendue. Ainsi, dans les dioxolannes (**7a**, Z = H), le proton H₂ apparaît en singulet vers 6·2 ppm, tandis que le proton H₄, relativement plus blindé (5·30 ppm), se présente sous forme d'un doublet résultant du couplage avec H_a (J_{HaHa} = 7·5 Hz); ce doublet est élargi par un couplage allylique

Dioxolannes	x	F(°C)	δH₂	δH₄	δH _a	δΗ _β	J _{H_aH_p}	J _{H4Ha}
	(H	117-8	6·15 (s)	5-08 (d)	6·36 (q)	7-07 (d)	16	7.6
7 a	{ MeO	120-1	6·10 (s)	5-05 (d)	6·36 (q)	*	_	7.4
	lcı	121-2	6·14 (s)	5·08 (d)	6·35 (q)	7·07 (d)	16-2	7.3
Dioxolannes	x	F(°C)	δH2	δH₄	J _{H₄H¢}	% relatif d 8a et 8b	e	
[fa	н	90-1	6·19 (s)	5·31 (d)	1.2	62		
<u> </u> 1́ь	н	78-80†	6.57 (s)	5-30 (d)	1.2	38		
	MeO	96-8	6·14 (s)	5·30 (d)	1.3	62		
δ 1 16	MeO	128	6.50 (s)	5.27 (d)	1.2	38		
}a	Cl	130-1	6·15 (s)	5·31 (d)	1.2	66		
{ь	Cl	93-5†	6.53 (s)	5·28 (d)	1.2	34		

TABLEAU 3. SPECTRES RMN DES DIOXOLANNES 7a, 8a et 8b

* Signal noyé dans ceux des protons aromatiques.

† Mélange des isomères 8a et 8b enrichi en 8b.

avec H_β. Pour les dioxolannes 8a et 8b, le signal correspondant au proton H₄ est dédoublé par couplage allylique avec H_β $(J_{H_4H_8} = 1.2 \text{ Hz})$.

L'action de BF_3 sur les dioxolannes 8 conduit exclusivement à l'équilibre thermodynamique entre les isomères 8a et 8b lorsque X = H ou Cl (Tableau 4). La méthode n'est plus applicable dans le cas des dioxolannes (8, X = MeO), car ces derniers se fragmentent sous l'action de BF_3 et donnent, en particulier, le paraméthoxybenzaldéhyde.

% Dioxola	annes de o	départ	Dioxolannes %8a	à l'équilibre % 8b
X = H	{	pur 60 40	85 85	15 15
X = Cl	{	pur 80 20	80 80	20 20

TABLEAU 4. EQUILIBRATION PAR BF_3 des dioxolannes 8a et 8b

Comme dans le cas des dioxolannes 4, nous attribuons la structure cis aux dioxolannes 8a, thermodynamiquement plus stables que 8b, et présentant en RMN un proton H₂ plus blindé que le proton correspondant de l'isomère 8b.⁸

Dans le cas des dioxolannes 7, le déplacement chimique du proton H_2 de l'isomère prépondérant est comparable à celui des dioxolannes 8a. Par suite, les dioxolannes 7 (Tableau 3) possèdent vraisemblablement la structure *cis* 7a.

Mécanisme de la formation des dioxolannes

Nous venons d'établir la structure des dioxolannes 4, 5, 7 et 8.

La formation de ces composés résulte donc nécessairement d'une rupture carbonecarbone du cycle époxyde. Par suite, la réaction se déroulera soit par une addition de l'aldéhyde sur l'époxyde, suivie (ou accompagnée) d'une rupture carbone-carbone, soit par une addition de l'aldéhyde sur l'ylure de carbonyle préalablement formé.

Nous excluons une attaque nucléophile de l'oxygène de l'aldéhyde, sur le carbone β de l'époxyde. En effet, les époxydes gem-disubstitués par des groupes électroattracteurs ne sont attaqués par les nucléophiles qu'en présence d'acide et cette réaction entraine une rupture carbone oxygène.⁷

Epoxydes 1	Aldéhydes 3	Dioxolannes 4a + 4b formés (%)	Epoxyde 1 restant (%)
x	Y		
(н	NO ₂	55	45
C1	NO	59	41
OMe	NO ₂	100	0*
NO ₂	NO ₂	0	100
≺н	OMe	33	67
Cl	OMe	33	67
OMe	OMe	83	17
NO ₂	OMe	0	100
L CI	Н	39	61
	Aldéhydes 6	Dioxolannes 8a + 8b	Epoxyde 1 restant
	$\mathbf{Z} = \mathbf{B}\mathbf{r}$	formés (%)	(%)
(H	_	15	85
) CI	_	35	65
) OMe	_	80	20
	<u> </u>	0	100

TABLEAU 5. COMPOSITION DES MÉLANGES OBTENUS	APRÈS 5 H D'ÉBULLITION DANS LE TOLUÈ	ne des époxyde
1 et des aldéh	AYDES 3 OU 6 (Z = Br)	

* Dans ce cas, la réaction est déjà totale après 5 mn à 110° et seul le dioxolanne 4a se forme.

Il est par suite, nécessaire d'admettre une prédissociation de la liaison carbonecarbone du cycle époxyde, c'est-à-dire que les aldéhydes s'additionnent sur les ylures de carbonyle (schéma 3).

Nous avons montré que, dans les conditions où se forment les dioxolannes, les époxydes 1 ou 2 donnent des réactions de cycloaddition dipolaire-1,3 avec des dipolarophiles comme le maléate ou le fumarate de méthyle,^{3,4} et que la vitesse de réaction dépend de la nature du substituant X, selon une séquence identique à celle correspondant à la formation des dioxolannes: $MeO \gg H \simeq Cl \gg NO_2$ (Tableau 5).

x	Y	Dioxolannes 4a + 4b formés	Epoxyde 1 restant*
(Cl	NO ₂	59%	
{Cl	Н	39%	61%
(CI	MeO	23%	77%
∫н	NO ₂	55%	45%
<u></u> н	MeŌ	23%	77%

TABLEAU 6. INFLUENCE DU SUBSTITUANT Y DES ALDÉHYDES 3 SUR LA VITESSE DE FORMATION DES DIOXOLANNES 48 ET 4b

* Mélange dosé par RMN après 5 h d'ébullition dans le toluène.

Les résultats du Tableau 6 montrent l'influence du substituant Y sur la vitesse de la réaction.

Même avec ces réactifs polaires, il ne semble pas que l'effet du substituant Y sur la réactivité puisse s'expliquer uniquement par l'attraction coulombienne. En effet, nous n'observons pas d'accélération lorsque le solvant toluène est remplacé par le nitrobenzène,^{14,15} dans les mêmes conditions de temps et de température. (Ces expériences ont été réalisées avec X = Cl, Y = H et X = Cl, $Y = NO_2$).

L'influence de substituants donneurs ou attracteurs d'électrons sur les dipolarophiles, a récemment été discutée en termes d'énergie d'interaction entre les orbitales frontières des réactifs.^{15,16} Lorsque les orbitales occupées et vacantes du dipôle et du dipolarophile sont disposées comme dans le schéma 4, l'introduction d'un substituant attracteur d'électrons sur le dipolarophile abaisse l'énergie des orbitales ψ_A et ψ_B et stabilise l'état de transition. Le phénomène inverse est observé avec un

substituant donneur. De telles interactions peuvent rendre compte, au moins en partie, de la diminution de la vitesse de la réaction, selon la séquence, pour Y:

$$NO_2 > H > MeO$$

Si on considère les résultats du Tableau 1, il apparaît que la réaction des aldéhydes 3 sur les époxydes 1, conduit à un mélange de dioxolannes isomères dans des proportions relatives qui ne dépendent pas de la nature des substituants X et Y, sauf dans le cas où X = MeO et $Y = NO_2$. Ce comportement particulier ne peut pas s'expliquer par un quelconque effet stérique. La présence simultanée des groupements X = MeOet $Y = NO_2$ est nécessaire pour conduire à cette stéréochimie.

C'est précisément dans ce cas qu'un intermédiaire ionique 12 est le plus stabilisé. Il est possible que dans ce cas limite, l'ylure de carbonyle s'additionne au p-nitrobenzaldéhyde selon un processus non concerté, faisant intervenir l'intermédiaire ionique 12 (Schéma 5).

La nature du dipolarophile se traduit par deux effets particulièrement nets:

(a) On observe un seul sens d'addition de l'aldéhyde sur l'ylure de carbonyle (nous avons montré qu'il faut éliminer une structure telle que **10**).

Un seul sens d'addition des aldéhydes, a aussi été constaté avec des ylures d'azométhine substitués par deux groupements électroattracteurs.¹⁰ Cette orientation unique se retrouve lors de l'addition d'ylures de carbonyle à des benzylidènes anilines.¹¹

(b) Les aldéhydes sont plus réactifs que les oléfines: l'aldéhyde cinnamique ou α -bromocinnamique réagit avec les époxydes 1 uniquement par le carbonyle de la fonction aldéhyde. Ceci apparaît également si on compare les résultats du Tableau 5 avec ceux concernant la réaction des époxydes 1 avec le maléate ou le fumarate de méthyle.⁴

Il est intéressant de noter que les époxydes (1, X = H ou Cl) réagissent avec la chalcone pour donner les tétrahydrofurannes isomères 13a et 13b (partie expérimentale). La réaction exclusive, au niveau de la double liaison éthylénique pourrait, dans ce cas, s'expliquer par une gène stérique au niveau du carbone du carbonyle de la chalcone.

Ph = C = C + 1 + 1 - CHCOPh H = COPh + 1 - CHCOPh + 1

PARTIE EXPERIMENTALE

Les époxydes 1 ou 2 ont été préparés selon une méthode déjà décrite.⁴ Les aldéhydes utilisés sont des aldéhydes commerciaux à l'exception de l'aldéhyde α -bromocinnamique dont la synthèse a été réalisée par déshydrohalogénation du dérivé dibromé de l'aldéhyde α -bromocinnamique.¹² Quant à l'aldéhyde benzoïque deutérié, nous l'avons préparé selon une méthode décrite dans la littérature.⁶

Synthèse des dioxolannes 4a, 4b, 7a, 7b, 8a et 8b. Des quantités équimoléculaires d'aldéhyde 3 ou 6 et d'époxyde 1 sont portés à ébullition, sous atmosphère d'azote, dans une quantité suffisante de toluène anhydre, pour que le milieu soit homogène. La réaction est totale après 48 h d'ébullition sauf dans le cas de l'époxyde $(1, X = NO_2)$ (dans ce cas il n'y a pas de réaction). Les dioxolannes formés n'évoluent pas dans ces conditions (en particulier ils ne s'isomérisent pas) même si on prolonge le temps de réaction. Notons que dans certains cas (Tableau 5) une ébullition de 48 h n'est pas nécessaire pour que la réaction soit totale.

Le résidu obtenu après évaporation du solvant peut être recristallisé dans EtOH ou MeOH.

Le premier jet obtenu correspond à l'isomère le plus abondant qui peut être purifié par de nouvelles recristallisations dans EtOH; le second jet permet d'isoler un mélange de deux dioxolannes isomères enrichi en dioxolannes le moins abondant. Nous n'avons, en général, pas pu obtenir à l'état pur cet isomère peu abondant. Des essais de séparation en chromatographie couche mince sur gel de silice ont montré une évolution des dioxolannes par hydrolyse en amide de l'un des deux groupements nitrile. Une hydrolyse de ce type a également été observée sur gel de silice avec des tétrahydrofurannes substitués par des groupements nitriles.¹³

Nous avons ainsi isolé le dioxolanne 14, $F = 178^{\circ}$; (Calc. C, 71·25; H, 5·00; N, 8·74. Tr. C, 70·67; H, 5·02; N, 8·39%). IR (CCl₄) v_{NH} 3415 cm⁻¹ (F), 3305 cm⁻¹ (f); $v_{C=0}$ 1710 cm⁻¹ (F) $v_{C=N}$ 2245 cm⁻¹ (f) $v_{C=C}$ 1655 cm⁻¹ (f); RMN (CDCl₃) δH_2 6·30 (s), δH_4 5·07 (d), $J_{H_4H_8} = 64$ Hz δH_x 6·55 (q); δH_β 7 (d), $J_{H_4H_8} = 15\cdot2$ Hz. Les caractéristiques IR et les analyses des dioxolannes 4, 7 et 8 figurent dans les Tableaux 7 et 8. Synthèse des dioxolannes 5. Nous avons utilisé les époxydes 2, R = Me ou R = Ph et l'aldéhyde paranitrobenzoique en proportion équimoléculaire.

La réaction est réalisée sous azote, au bain d'huile à 165-170° en l'absence de tout solvant. Le temps de réaction est de 2 h lorsque $\mathbf{R} = \mathbf{Ph}$ et de 5 h lorsque $\mathbf{R} = \mathbf{Me}$. Si ce temps de réaction est augmenté la purification des dioxolannes devient très difficile. En IR, ces dioxolannes 5 se caractérisent par une bande nitrile de faible intensité $v_{C=N}$ 2250 cm⁻¹ (CCl₄). 5a, $\mathbf{R} = \mathbf{Me}$: $\mathbf{F} = 142-3^{\circ}$ (EtOH), Rdt 30%. (Calc. C, 64·48; H, 3·88; N, 12·54; O, 19·10. Tr. C, 64·64; H, 4·08; N, 12·45; O, 19·12%). 5, $\mathbf{R} = \mathbf{Ph}$: $\mathbf{F} = 145-6^{\circ}$ (EtOH), Rdt 55%. (Calc. C, 69·52; H, 3·78; N, 10·58; O, 16·12. Tr. C, 69·62; H, 3·95; N, 10·55; O, 16·16%).

Equilibration par BF₃. Ces expériences ont été réalisées pour les dioxolannes 4a et 4b, X = Cl, $Y = NO_2$

Dioxolannes	x	Y	F(°C)	$v_{C=N}(cm^{-1})$	
4				(CCl ₄)	
4a	Н	NO ₂	96	2245 (m)	
4a	н	MeO	131	2252 (m)	
4a	Cl	NO ₂	135	2246 (m)	
4b	Cl	NO ₂	107	2247 (m)	
4 a	Cl	MeO	108	2252 (m)	
4a	C1	Н	90	2250 (m)	
4a	MeO	MeO	92	2248 (m)	
4a	MeO	Cl	132	2250 (m)	
4 a	MeO	NO ₂	166	2252 (m)	
Dioxolannes	x	Z	F(°C)	VCEN IN	$v_{C=C}$ (cm ⁻¹)
7 ou 8				(cm ·)	CCI4
7a	н	Н	117-8	2251 (m)	1656 (F)
7 a	Cl	н	121-2	2250 (m)	1655 (F)
7=	MeO	н	120-1	2251 (m)	1655 (F)
8a	н	Br	90-1	2252 (m)	1645 (F)
88	Cl	Br	130-1	2253 (m)	1645 (F)
8b	MeO	Br	128	2250 (m)	1643 (F)

TABLEAU 7. SPECTRES IR DES DIOXOLANNES 4, 7 OU 8

Diovolannes	,	V 211 7	い い ら	#/0 +P Q	U U	%	H	~	Ň		õ	~
	<	7 NO 1		Kut %	Calc.	Tr.	Calc.	, Tr.	Calc.	Ţr.	Calc.	Tr.
48	H	NO2	8	37	63-55	63-47	3-43	3.50	13-08	12-96	19-94	19-88
4	Н	MeO	131	38	70-59	70-44	4·57	4·36	9-15	86·8	15-69	15.50
4	Ū	NO ₂	135	32	57-38	57·21	2.81	3-01	11-81	12.05	18-02	17-84
4	ច	NO2	106-81		57-38	57-44	2.81	2·80	11-81	11·89	18-02	18-08
4 8	ū	н	06	38	65.70	65·78	3.54	3.61	10-31	9-98	10-31	10.55
4a	ច	MeO	108	36	63·43	63-41	3.82	3-99	8·22	8-45	14.10	13-93
4a	MeO	MeO	92	40	67-86	67-45	4-76	4-62	8·33	8·40	19-05	18-90
4	MeO	ס	132	40	63·43	63·39	3-82	3·85	8·22	8·26	I	:
48	MeO	NO2	166	69	61-54	61·29	3-69	3.79	11-97	11-86	22.97	22-72
[7a	Н	н	177-8	28	75-49	75-42	4.63	4·78	9-27	9.15	10-60	10-50
7a	MeO	н	120-1	35	72:29	72-45	4.84	4.90	8-43	8-41	14.45	14-40
7a	ū	Н	121-2	31	67-56	67-33	4-15	3-97	8·29	8 44	9-48	9-65
	Н	Br	1-06	36	59-84	59-83	3-41	3-46	7-35	7-35	8-40	8.39
) 8b	Н	Br	78-80 †	I	59-84	59-74	3-41	3.48	7-35	7-44	8:40	8.60
8	MeO	Br	96-8	4 0	58-39	58·56	3-65	3·58	6.81	6-94	11-68	12:06
ŝ	G	Br	130-1	39	54-87	54-77	2-89	3.09	6-74	6.82	7.70	7-82
æ _	ū	Br	93-5†		54-87	54-92	2.89	2-91	6·74	6.74	7-70	7-80

TABLEAU 8. ANALYSES CENTÉSIMALES DES DIOXOLANNES 4a, 4b, 7a, 8a et 8b

Il s'agit de rendement en produits purifiés calculés à partir de l'époxyde 1.
 Mélange d'isomères.

Ylures de carbonyle dérivés de gem-dicyanoépoxydes

	() L		RMN		IR (CCI4) (cm-l)
	FC C)	8H,	8H3	8H4		,,
1	151	5-97 (d)	5 (m)	5 (m)	1693 (F)	2240 (f)
	•	J _{H3H4} = 8·6 Hz 5·73 (d)	5-48 (d)	5-47 (1)	I	Ι
	179	J _{H4H} , = 6-8 Hz 5-94 (d)	$J_{H_3H_4} = 8.1 \text{ Hz}$ 5 (m)	5 (m)	1693 (F)	2240 (I)
	151	J _{H4H3} =9 Hz 5·71 (d)	5-05 (d)	4·56 (t)	1690 (F)	2242 (f)
		$J_{H,H_{s}} = 7.4 \text{ Hz}$	$J_{H_1H_2} = 7.3 \text{ Hz}$			

nge de 2 isomères.	
* Mélar	

3
TRAHYDROFURANNES
des té
ANALYSES
10.
BLEAU

Tableau 10. Analyses des tétrahydrofurannes 13	0	Ľ.	8.39	7.80	7-82
	°0%	Calc.	8.46	7-75	7-75
	_	Tr.	7:40	6-52	6.87
	%N	Calc.	7-41	6-78	6.78
		ן ד 	4.83	4.13	4·10
	H%	Calc.	4.76	4-12	4-12
		Tr.	79.16	73-04	73-08
	°2	Calc.	79-36	72.73	72.73
	Rdt %		30	35	15
	F (°C)		151	179	151
	>	<	н	с	0

(avec les autres dioxolannes 4 la fragmentation devient importante) ou avec les dioxolannes 8, X = H ou X = Cl.

0.3 g de dioxolanne est dissous dans 30 cm³ de benzène anhydre. On fait successivement passer un courant d'azote pendant 5 mn puis BF₃ gazeux durant 30 mn. Un courant d'azote est ensuite maintenu durant 5 mn et le milieu est additionné de 50 cm³ d'éther. La solution est lavée à l'eau, séchée et le solvant est évaporé sous pression réduite.

Le produit brut obtenu est analysé par RMN.

Réaction des époxydes 1 *avec la chalcone*. Le mode opératoire est identique à celui décrit pour la synthèse des dioxolannes 4, 7 ou 8.

Les diastéréoisomères 13a et 13b sont purifiés lorsque X = Cl; pour X = H nous n'avons purifié que l'isomère le plus abondant. Les caractéristiques IR et RMN ainsi que les analyses centésimales des tétrahydrofurannes 13 sont rassemblées dans les Tableaux 9 et 10.

Les spectres de RMN sont enregistrés à 100 MHz à l'aide d'un appareil JEOLCO 4 H 100, le TMS est utilisé comme référence interne, et le CDCl₃ comme solvant.

Les spectres IR sont enregistrés avec le spectrophotomètre Perkin-Elmer 225.

Les points de fusion sont déterminés au banc K ofler, ou sur une platine chauffante équipée d'un microscope.

REFERENCES

- ¹ A. Rosowsky, Heterocyclic Compounds with Three and Four Membered Rings, A. Weisberger, John Wiley, part I, N.Y. (1964)
- ² W. J. Linn et E. Ciganek, J. Org. Chem. 34, 2146 (1969)
- ³ A. Robert, J. J. Pommeret et A. Foucaud, C.R. Acad. Sci., 270C, 1739 (1970)
- ⁴ J. J. Pommeret et A. Robert, Tetrahedron 27, 2977 (1971)
- ⁵ A. Robert, J. J. Pommeret et A. Foucaud, Tetrahedron Letters 231 (1971)
- ⁶ K. B. Wiberg, J. Am. Chem. Soc. 76, 5371 (1954)
- ⁷ A. Robert et A. Foucaud, Bull. Soc. Chim. 2537 (1969); Bull. Soc. Chim., 212 (1970)
- ⁸ W. E. Willy, G. Binsch et E. L. Eliel, J. Am. Chem. Soc. 92, 5394 (1970)
- ⁹ J. Chuche, G. Dana et M. R. Monot, Bull. Soc. Chim. 3300 (1967)
- ¹⁰ F. Texier et R. Carrie, C.R. Acad. Sci. 269C, 709 (1969)
- ¹¹ J. J. Pommeret et A. Robert, C.R. Acad. Sci. 272C, 333 (1971)
- ¹² C. F. H. Allen et C. O. Edens, Organic Synthèses vol. III, p. 731, John Wiley N.Y. (1955)
- ¹³ M. O. Bagby, C. R. Smith, J. R. Wolf et I. A. Wolf, J. Org. Chem. 34, 2732 (1969)
- ¹⁴ O. Eisenstein et N. Trong Anh, Tetrahedron Letters 1191 (1971)
- ¹⁵ J. Sauer, Angew. Chem. Int. Ed. 6, 16 (1967)
- ¹⁶ R. Sustmann, Tetrahedron Letters 2717 (1971)